π -CYCLOPENTADIENYLBIS(TRI-n-BUTYLPHOSPHINE)NICKEL HALIDE

MASAO SATO, FUMIE SATO AND TADAO YOSHIDA Tokyo Institute of Technology, Tokyo (Japan) (Received September 8th, 1970)

SUMMARY

The reaction of nickelocene (dicyclopentadienylnickel) with allyl halide in the presence of tri-n-butylphosphine has been shown to produce π -cyclopentadienylbis(tri-n-butylphosphine)nickel halide.

INTRODUCTION

The complexes π -C₅H₅Ni(Ph₃P)₂F, $[\pi$ -C₅H₅Ni(Ph₃P)₂]⁺SnCl₃⁻, and $[\pi$ -C₅H₅Ni(Ph₃P)₂]⁺SnCl₃⁻. Y, where Y = CH₂Cl₂ or (CH₃)₂CO have been described recently^{1,2}, but no other complexes of this type are known. This paper describes the preparation of $\{\pi$ -C₅H₅Ni[P(n-Bu)₃]₂\}⁺X⁻(X=Cl, Br, I).

EXPERIMENTAL

 $(\pi$ -C₅H₅)₂Ni was prepared in the usual way³. Benzene and n-hexane were purified and degassed before use.

IR spectra were recorded on a JASCO-IR-G spectrometer. Proton NMR spectra were recorded on a JEOL-JNM-4H100 NMR spectrometer with tetramethyl-silane as the internal standard. Conductances were measured by the Wheatstone bridge method.

All experiments were conducted under dry nitrogen.

The reaction of nickelocene with allyl chloride in the presence of tri-n-butylphosphine

Allyl chloride (12 mmoles) was added to a stirred benzene solution of nickelocene (1 mmole) and tri-n-butylphosphine (3 mmoles) at room temperature under dry nitrogen. The colour changed immediately from green solution to red. The mixture was then refluxed for 2 h. The solvent was removed under vacuum to leave a reddish yellow residue. Extraction of the residue with n-hexane and recrystallization in the presence of tri-n-butylphosphine gave 0.54 g (95% yield based on Ni) of greenyellow crystals, m.p. 85–87° (decompn.) (Found: C, 61.16; H, 10.59; Cl, 6.63; Ni, 9.98. $C_{29}H_{59}ClNiP_2$ calcd.: C, 61.81; H, 10.48; Cl, 6.31; Ni, 10.42%.)

A similar reaction of allyl bromide (12 mmoles) with nickelocene (1 mmole) in

J. Organometa. Chem., 27 (1971) 273-274

the presence of tri-n-butylphosphine (3 mmoles) gave 0.60 g (98% yield based on Ni) of green-yellow crystals, m.p. 97–99° (decompn.). (Found : C, 56.90; H, 9.71; Ni, 9.41. $C_{29}H_{59}BrNiP_2$ calcd.: C, 57.20; H, 9.71; Ni, 9.66%.)

Similarly, reaction of allyl iodide (12 mmoles) with nickelocene (1 mmole) in the presence of tri-n-butylphosphine (3 mmoles) gave 0.59 g (90% yield based on Ni) of green-yellow crystals, m.p. 95–97°C (decompn.). (Found: C, 52.57; H, 9.14; Ni, 8.48. $C_{29}H_{59}INiP_2$ calcd.: C, 53.20; H, 9.01; Ni, 8.95%.)

RESULTS AND DISCUSSION

Nickelocene reacts with $CH_2=CH-CH_2Cl$ in the presence of $P(n-Bu)_3$ to give the green-yellow crystalline product of elementary formula $C_{29}H_{59}ClNiP_2$ (I). The IR spectrum of the solid resembles that of π -C₅H₅Ni[P(n-Bu)₃]Cl, and the proton NMR spectrum of the CS_2 solution shows bands at τ 7.5–9.3 (intensity 54) due to the P(n-Bu)₃ protofis and a sharp singlet at τ 4.95 ppm (intensity 5) due to π -C₅H₅ protons. The compound is soluble in H₂O without decomposition, and its aqueous solution is a good conductor of electricity. These facts indicate that the product (I) is ionic, and it is formulated as { π -C₅H₅Ni[P(n-Bu)₃]₂}⁺Cl⁻.

The complexes $\{\pi-C_5H_5Ni[P(n-Bu)_3]_2\}^+Br^-$ (II) and $\{\pi-C_5H_5Ni[P(n-Bu)_3]_2\}^+I^-$ (III) were obtained analogously from $CH_2=CH-CH_2Br$ and $CH_2=CH-CH_2I$.

The proton NMR spectrum data and conductance data for the complexes (I), (II) and (III) are given in Table 1.

(X=Cl, Br, I)

TABLE 1

THE PROTON NMR DATA AND ELECTROLYTIC MOLAR CONDUCTANCE DATA FOR THE COMPLEXES (I)-(III)

Compound	Proton NMR data		Molar electrolytic conductance	
	τ[π-C ₅ H ₅]	$\tau[P(n-Bu)_3]$	$\Lambda_{\rm m}{}^a$	М
(I)	4.95	7.5~9.3	109.5	1.17×10^{-2}
(11)	4.90	7.5~9.3	110.0	3.50×10^{-3}
(III)	4.85	7.5~9.3	92.5	1.88×10^{-4}

^a Ohm⁻¹·cm²·mole⁻¹.

REFERENCES

1 P. A. MCARDLE AND A. R. MANNING, Chem. Commun., (1967) 417.

2 M. VAN DEN AKKER AND F. JELLINEK, J. Organometal. Chem., 10 (1967) P37.

3 J. F. CORDES, Chem. Ber., 95 (1962) 3084.

J. Organometal. Chem., 27 (1971) 273-274